Строительный мастер
  • Главная
  • Электропроводка
  • Термофен из резистора пэв. Как сделать паяльник своими руками. Самодельный паяльник: схема. Что такое smd

Термофен из резистора пэв. Как сделать паяльник своими руками. Самодельный паяльник: схема. Что такое smd

Домашнему мастеру приходится выполнять разные работы, соединять детали всевозможными способами. Среди них метод пайки провода, металлов и пластмасс остается одним из наиболее доступных.

Несмотря на большое количество в продаже промышленных моделей вашему вниманию предлагается ознакомиться с технологией изготовления удобного электрического паяльника своими руками, уяснить принцип его конструкции.

По предлагаемой статье несложно изготовить такой паяльник.

Неоспоримым преимуществом этой модели является практически мгновенный вывод в рабочее положение пайки из холодного состояния и быстрое остывание нагревательного элемента при отключении.

Это значительно уменьшает дымы и запахи, сопровождающие длительный разогрев обычного наконечника, используемого в резистивных моделях.


Электрический паяльник, взятый за образец

Вот такой раритетный экспонат уже четвертое десятилетие продолжает успешно работать в домашней мастерской практически без всяких поломок. Диэлектрическая рукоятка удобна при пайке, кнопка включения очень легко управляет нагревом, а лампочка накаливания освещает любое затененное рабочее место.


Мощности в 65 ватт вполне достаточно для пайки транзисторов, микросхем, проводов и других радиотехнических изделий.

Единственное условие поддержания работоспособности - своевременно заменять рабочее жало - наконечник, которое под действием высокой температуры со временем перегорает.

Наконечник выгибается круглогубцами из медной одножильной монтажной проволоки с поперечным сечением 1,5 мм квадратных. На концах создаются кольца, затягиваемые по ходу вращения крепежных гаек. Для обеспечения хорошего электрического контакта места соприкосновения проволоки, шайб и силовой шины необходимо поддерживать в чистоте, отчищать от нагара ножом или отверткой при замене жала.

Принцип работы электрической схемы паяльника

Трансформатор

В основу конструкции положен обыкновенный трансформатор, состоящий из:

  • первичной обмотки на 220 вольт;
  • закороченной вторичной силовой обмотки из двух витков;
  • магнитопровода.

Для удобства пайки можно создать дополнительную вторичную обмотку на 4,5 вольта, питающую лампочку накаливания от карманного фонарика или мощный светодиод. Когда пространство магнитопровода ограничено, то допускается для цепи подсветки делать низковольтное ответвление от первичной обмотки по принципу автотрансформатора. Создастся экономия пространства и провода.

Силовая вторичная обмотка выполнена из толстой медной шины, постоянно работает в режиме короткого замыкания на более тонкий наконечник из меди. За счет большого теплового воздействия тока КЗ происходит быстрый разогрев жала паяльника до рабочей температуры.

Отвод тепла в окружающую среду и на расплавление припоя в кратковременном режиме пайки обеспечивают тепловой баланс, исключающий перегрев обмоток трансформатора и наконечника до критической температуры.

Схема питания трансформатора

220 вольт подается через обычную электрическую вилку со шнуром. Внутри рукоятки паяльника размещают микровыключатель, задействованный через нормально отключенный контакт с кнопкой управления.

При нажатии на кнопку питания напряжение подается на трансформатор, а при отпускании - снимается. В целях обеспечения электроинструментом рекомендуется устанавливать не одиночный, а сдвоенный микрик в разрыв каждого провода питания.

В такой конструкции опасный всегда будет отсутствовать на трансформаторе при разомкнутых контактах выключателя.

Материалы, необходимые для сборки паяльника

Чтобы собрать самодельный паяльник потребуется разобрать несколько однотипных трансформаторов, которые раньше широко использовались в старых ламповых телевизорах, магнитофонах, радиоприемниках и другой подобной аппаратуре.


Их пластины из трансформаторного железа будут использованы для создания магнитопровода, а лакированные провода обмотки пойдут на намотку катушки первичной обмотки и лампы подсветки.


Для изготовления вторичной силовой обмотки потребуется медная шинка прямоугольного сечения. У меня оно составляет 3х8 мм. Можно чуть меньше, но сильно занижать не желательно- увеличивается электрическое сопротивление цепи. Более толстые шинки займут все свободное место, не позволят намотать первичную обмотку.

Если прямоугольной медной шинки найти не удается, то можно попробовать использовать круглый проводник соответствующего сечения.

Также для сборки потребуются:

  • микровыключатель;
  • электрическая вилка;
  • шнур питания или провод;
  • лампочка;
  • рукоятка, которую можно использовать от пластмассовых игрушечных пистолетов;
  • бумага или лакоткань для изоляции;
  • кусок жести для корпуса.

Последовательность расчета деталей электрической схемы

Выбор мощности паяльника

Основным показателем эффективности конструкции является количество теплоты, выделяемой на жале в момент прохождения через него электрического тока. Его сила, специально увеличенная режимом короткого замыкания, как раз и разогревает медь наконечника.

Ток, проходящий через жало моего паяльника, немного превышает 200 ампер. Специально проверял токоизмерительными клещами. А вот напряжение, даже в режиме холостого хода, меньше десятых долей вольта. Поэтому оно не представляет особой опасности при пайке.

Произведение тока, проходящего по силовой обмотке на величину напряжения на ней, характеризуется вторичной или выходной мощностью трансформатора S2. Вот эта величина нас и интересует. Однако, для упрощения расчета будем начинать оперировать с первичной мощностью S1, определяющей потребление электроэнергии.

Она отличается на коэффициент полезного действия - кпд. Ее значение в 65 ватт взято за основу промышленного образца, показанного на первой фотографии. Для своих целей я выбрал 80 ватт.

Влияние КПД

Конструктивное соотношение между вторичной мощностью трансформаторов для радиоэлектронных устройств и кпд приведено в таблице.

КПД Мощность в ваттах
0,95÷0,98 ≥1000
0,93÷0,95 300÷1000
0,90÷0,93 150÷300
0,80÷0,90 50÷150
0,50÷0,80 15÷50

Набор магнитопровода пластинами из трансформаторного железа

Магнитные характеристики магнитопровода и трансформатора в целом определяются:

  1. объемом железа;
  2. и его свойствами.

На второй параметр мы особо повлиять не можем, ибо используем то железо от старого трансформатора, которое попало под руку. Поэтому применяем самую простую усредненную методику, не особо вдаваясь в сложные коэффициенты, поправки, графики.

Для паяльника мы можем выбрать магнитопровод одной из форм:

  • прямоугольника;
  • Ш-образный.

Площадь его сечения для каждого случая показана на картинке. Здесь же приведены формулы для расчета.


Выбрав первичную мощность паяльника в ваттах и зная форму магнитопровода вычисляем Qc - площадь сечения по эмпирической формуле.

Определив ее и измерив размер «А» на железе можно рассчитать глубину «В», которую потребуется набрать определенным количеством пластин.

Расчет провода для обмотки катушки

Определение диаметра

По первичной мощности, например, 80 ватт и напряжению 220 вольт не сложно рассчитать ток, который будет протекать по первичной катушке.

Где d - диаметр проволоки в мм, а I - ток в амперах.

Определение числа витков

Используем эмпирическую закономерность, называемую количеством витков на вольт - ω’. Ее вычисляют:

Первичная катушка

Qc уже вычислена раньше. Определив ω’ следует эту величину умножить на 220, ибо у нас в первичной обмотке действует такое напряжение, а не один вольт.

Вторичная катушка

Для цепи подсветки напряжение 4,5 вольта. На него и умножаем полученное значение ω’.

Обе вычисленные величины: диаметр и количество витков усреднены. Ими придется варьировать в небольших пределах с учетом того, что пространство в окне магнитопровода ограничено. Диаметр провода лучше сразу занизить - паяльник работает в кратковременном режиме.

А вот с числом витков поступать следует осторожнее. Они сильно влияют на вольтамперную характеристику паяльника и общую картину нагрева жала.

Силовая катушка делается двумя витками.

Сборка паяльника

Каркас обмотки

Обычную катушку для намотки провода можно сделать из трансформаторного картона или даже от обычных коробок. Только лучше выбирать плотный материал.


Внутри каркаса должны поместиться все пластины железа, а между их полостями снаружи следует уложить витки провода. Все обмотки между собой изолируют лакотканью или бумагой. Первичная и вторичные обмотки отделяются гальванической развязкой.

Силовая обмотка

Ее потребуется выгнуть из медной шинки. Такую работу поможет выполнить металлический шаблон из куска металла по габаритам полости каркаса для железа. Работу выполняют в слесарных тисках аккуратными ударами молотка по заготовке.

На картинке показана последовательность выгиба, начатая с одного конца шинки. Несколько проще выполнять ее одновременно с середины обмотки.


Когда шинка выгнута, то ее витки изолируют между собой полоской бумаги, а затем размещают внутри картонного каркаса. Останется намотать остальные обмотки, обеспечив их изоляцию, и надеть железные пластины, создав их плотное прилегание с минимально возможными зазорами.

Собрать паяльник своими руками домашних (и не только) мастеров побуждают прежде всего экономические соображения. Простой паяльник на 220 В для обычных мелких спаечных работ лучше, конечно, купить. Однако и его возможно доработать, не разбирая, чтобы продлить жизнь жала. Но вот «топор» на 150-200 Вт, которым можно паять металлические водопроводные трубы, стоит уже не 4,25, а вдесятеро больше. И не советских рублей, а вечнозеленых условных единиц. Та же проблема возникает, если паять нужно вне доступности электросети от автомобильных 12 В или карманного литий-ионного аккумулятора. Как самостоятельно сделать паяльник на такие случаи, и не только на такие, рассматривается в сегодняшней публикации.

Что такое smd

Sub Micro Devises, сверхминиатюрные устройства. Наглядно можно увидеть smd, открыв мобильный телефон, смартфон, планшет или компьютер. По технологии smd малюсенькие (возможно, меньше среза спички) компоненты без проволочных выводов монтируются пайкой на контактные площадки, по терминологии smd называемые полигонами. Полигон может быть с тепловым барьером, предотвращающим растекание тепла по дорожкам печатной платы. Тут опасность не только и не столько в возможности отслоения дорожек – от нагрева может порваться пистон, соединяющий слои монтажа, что приведет устройство в полную негодность.

Паяльник для smd должен быть не только микромощным, до 10 Вт. Запас тепла в его жале не должен превышать того, который может выдержать паяемая деталь. Но долгая пайка слишком холодным паяльником еще более опасна: припой все не плавится, но деталюшка-то греется. А на режим пайки существенно влияет наружная температура, и тем больше, чем меньше мощность паяльника. Поэтому паяльники для smd выполняются либо с ограничением времени и/или величины теплоотдачи при пайке, либо в оперативной, на протяжении текущей технологической операции, регулировкой температуры жала. Причем держать ее нужно на 30-40 градусов выше температуры плавления припоя с точностью буквально до 5-10 градусов; это т. наз. допустимый температурный гистерезис жала. Этому очень мешает тепловая инерция самого паяльника, и основная задача при конструировании такового – добиться его возможно меньшей постоянной времени по теплу, см. далее.

Сделать паяльник в домашних условиях возможно для любой из указанных целей. В т.ч. и мощный для пайки стального либо медного водопровода, и достаточно точный мини для smd.

Примечание: вообще-то в паяльнике жало это рабочая (залуживаемая) часть его стержня. Но, поскольку стержни бывают и другие разные, будем для ясности считать весь стержень жалом. Если рабочая часть паяльника насаживается на стержень, она называется наконечником. Примем, что наконечник со стержнем это тоже жало.

Самый простой

Пока не будем вдаваться в сложности. Допустим, нам нужен обычный паяльник на 220В без затей. Идем выбирать и видим, разница в ценах достигает 10 и более раз. Разбираемся – почему. Первое: нагреватель, нихромовый или керамический. Последний (не «альтернативный»!) практически вечен, но, если паяльник уронить на твердый пол, может расколоться. Жало паяльников на керамике обязательно несменное – значит, надо покупать новый. А нихромовый нагреватель, если паяльник не забывать включенным на ночь, служит более 10 лет; при эпизодическом пользовании – свыше 20. И в крайнем случае его можно перемотать.

Разница в цене сократилась теперь до 3-4 раз, в чем еще дело? В жале. Никелированное из меди со специальными присадками мало растворяется припоем и очень медленно пригорает в обойме паяльника, но стоит дорого. Латунное или бронзовое хуже греется, и паять им smd нельзя – температурный гистерезис никак не удается вогнать в норму вследствие много худшей, чем у меди, теплопроводности материала. Красномедное жало и съедается припоем, и довольно быстро распухает от окиси меди, но зато дешевле.

Примечание: жало из электротехнической меди (отрезок обмоточного провода) для обычного паяльника непригодно – быстро растворяется и обгорает. Однако для smd такое жало самое то, его теплопроводность максимально возможная, а тепловая инерция и гистерезис минимальны. Правда, менять его придется часто, но жало-то со спичку или меньше.

С обгоранием и распуханием красномедного жала можно бороться просто аккуратностью: окончив работу и дав паяльнику остыть, жало вынимают, обколачивают от окисла, постукивая о край стола, а канал обоймы паяльника продувают. С растворением припоем хуже: часто подтачивать жало неудобно и оно быстро срабатывается.

Сделать жало для паяльника из обычной красной меди в разы более стойким к действию расплавленного припоя можно, не заточив его рабочий конец, а проковав до нужной формы. Холодная медь отлично куется обычным слесарным молотком на наковальне настольных тисков. У автора этой статьи в древнем советском ЭПЦН-25 кованое жало сидит уже более 20 лет, хотя в работе этот паяльник бывает если не каждый день, то уж точно каждую неделю.

Простой из резистора

Расчет

Самый простой паяльник можно сделать из проволочного резистора, это готовый нихромовый нагреватель. Рассчитать его также несложно: при рассеивании номинальной мощности в свободном пространстве проволочные резисторы греются до 210-250 градусов. С теплоотводом в виде жала «проволочник» держит долговременную перегрузку по мощности в 1,5-2 раза; температура жала при этом будет не ниже 300 градусов. Ее можно повысить до 400, дав перегрузку по мощности в 2,5-3 раза, но тогда после 1-1,5 час работы паяльнику нужно будет давать остыть.

Рассчитывают необходимое сопротивление резистора по формуле: R = (U^2)/(kP), где:

R – искомое сопротивление;

U – рабочее напряжение;

P – требуемая мощность;

k – указанный выше коэффициент перегрузки по мощности.

Напр., нужен паяльник на 220 В 100 Вт для пайки медных труб. Теплоотдача большая, поэтому берем k = 3. 220^2 = 48400. kP = 3*100 = 300. R = 48400/300 = 161,3… Ом. Берем резистор на 100 Вт 150 или 180 Ом, т.к. «проволочников» на 160 Ом не бывает, этот номинал из ряда на 5% допуск, а «проволочники» не точнее 10%.

Обратный случай: есть резистор на мощность p, какой мощности из него можно сделать паяльник? От какого напряжения его запитывать? Вспоминаем: P = U^2/R. Берем P = 2 p. U^2 = PR. Берем из этой величины квадратный корень, получаем рабочее напряжение. Напр., есть резистор 15 Вт 10 Ом. Мощность паяльника выходит до 30 Вт. Берем квадратный корень из 300 (30 Вт*10 Ом), получаем 17 В. От 12 В такой паяльник разовьет 14,4 Вт, можно паять мелочь легкоплавким припоем. От 24 В. От 24 В – 57,6 Вт. Перегрузка по мощности почти в 6 раз, но изредка и недолго спаять этим паяльником что-то большое возможно.

Изготовление

Как сделать паяльник из резистора, показано на рис. выше:

  • Подбираем подходящий резистор (поз. 1, см. также далее).
  • Готовим детали жала и крепеж к нему. Под кольцевую пружину надфилем выбирается канавка на стержне. Под болт (винт) и наконечник делаются резьбовые глухие отверстия, поз. 2.
  • Собираем стержень с наконечником в жало, поз.3.
  • Закрепляем жало в резисторе-нагревателе болтом (винтом) с широкой шайбой, поз. 4.
  • Крепим нагреватель с жалом к подходящей рукоятке любым удобным способом, поз. 5-7. Одно условие: термостойкость рукоятки не ниже 140 градусов, до такой температуры могут нагреваться выводы резистора.

Тонкости и нюансы

Описанный выше паяльник из резисторов на 5-20 Вт делали многие (в т.ч. и автор во дни пионерской молодости) и, попробовав, убеждались – работать им всерьез нельзя. Греется невыносимо долго, и паяет только мелочь тычком – слой керамики мешает теплопередаче от нихромовой спирали в жало. Именно поэтому нагреватели фабричных паяльников мотаются на слюдяные оправки – теплопроводность слюды на порядки выше. К сожалению, свернуть слюду в трубочку дома невозможно, да и мотать нихром 0,02-0,2 мм дело тоже не для каждого.

Но вот с паяльниками от 100 Вт (резисторы от 35-50 Вт) дело другое. Тепловой барьер из керамики в них относительно тоньше, слева на рис., а запас тепла в массивном жале на порядок больше, т.к. его объем растет по кубу размеров. Качественно пропаять стык медных труб 1/2″ 200 Вт паяльником из резистора вполне возможно. Особенно, если жало не сборное, а цельное кованое.

Примечание: проволочные резисторы выпускаются на мощность рассеяния до 160 Вт.

Только для паяльника надо искать резисторы старых типов ПЭ или ПЭВ (в центре на рис., в производстве до сих пор). Их изоляция остеклованная, выдерживает многократный нагрев до светло-красного без потери свойств, только темнеет, остывая. Керамика внутри чистая. А вот резисторы С5-35В (справа на рис.) крашеные, внутри тоже. Снять краску в канале полностью невозможно – керамика пористая. При нагреве краска обугливается и жало прикипает намертво.

Регулятор для паяльника

Пример с низковольтным паяльником из резистора приведен выше не зря. Резистор ПЭ (ПЭВ) из хлама или с железного базара чаще всего оказывается неподходящего номинала под наличное напряжение. В таком случае нужно делать регулятор мощности для паяльника. В наши дни это гораздо проще даже людям, имеющим об электронике самое смутное представление. Идеальный вариант – купить у китайцев (ну, Али Экспресс, а то как же) готовый универсальный регулятор напряжения и тока TC43200, см. рис. справа; стоит он недорого. Допустимое входное напряжение 5-36 В; выходное – 3-27 В при токе до 5 А. Напряжение и ток выставляются отдельно. Поэтому можно не только выставить нужное напряжение, но и регулировать мощность паяльника. Есть, напр., инструмент на 12 В 60 Вт, а сейчас нужно 25 Вт. Выставляем ток в 2,1 А, на паяльник пойдет 25,2 Вт и ни милливаттом больше.

Примечание: для использования с паяльником штатные многооборотные регуляторы TC43200 лучше заменить обычными потенциометрами с градуированными шкалами.

Импульсные

Многие предпочитают импульсные паяльники: они лучше подходят для микросхем и др. мелкой электроники (кроме smd, но см. и далее). В ждущем режиме жало импульсного паяльника или холодное, или немного подогревается. Паяют, нажав на кнопку пуска. Жало при этом быстро, за доли-единицы с, греется до рабочей температуры. Контролировать пайку очень удобно: растекся припой, выдавил из капли флюс – отпустил кнопку, жало так же быстро остыло. Нужно только успеть его убрать, чтобы не припаялось туда же. Опасность сжечь компонент, имея некоторый опыт, минимальна.

Типы и схемы

Импульсный разогрев жала паяльника возможен несколькими способами в зависимости от рода работы и требований к эргономике рабочего места. В любительских условиях, или мелкому ИП-одиночке импульсный паяльник удобнее и доступнее будет сделать по одной из след. схем:

  1. С токоведущим жалом под током промышленной частоты;
  2. С изолированным жалом и форсированным его разогревом;
  3. С токоведущим жалом под током высокой частоты.

Электрические принципиальные схемы импульсных паяльников указанных типов приведены на рис: поз. 1 – с токоведущим жалом промышленной частоты; поз. 2 – с форсированным подогревом изолированного жала; поз. 3 и 4 – с токоведущим жалом высокой частоты. Далее мы разберем их особенности, достоинства, недостатки и способы реализации в домашних условиях.

50/60 Гц

Схема импульсного паяльника с жалом под током промышленной частоты наиболее проста, но это не единственное ее достоинство, и не главное. Потенциал на жале такого паяльника не превышает долей вольта, поэтому он безопасен для самых нежных микросхем. Пока не появились индукционные паяльники системы METCAL (см. далее), именно импульсниками промышленной частоты работала значительная часть монтажников на производстве электроники. Недостатки – громозкость, значительный вес и, как следствие, плохая эргономика: на смене длинее 4 час. работники уставали и начинали ошибаться. Но в любительском обиходе импульсных паяльников промышленной частоты до сих пор много: Зубр, Сигма (Sigma), Светозар и др.

Устройство импульсного паяльника на 50/60 Гц показано на поз. 1 и 2 рис. Видимо, ради экономии на издержках производства изготовители чаще всего применяют в них трансформаторы на сердечниках (магнитопроводах) типа П (поз 2), но это далеко не оптимальный вариант: чтобы паяльник паял как ЭПЦН-25, мощность трансформатора нужна 60-65 Вт. Вследствие большого поля рассеяния трансформатор на П-сердечнике в режиме КЗ сильно греется, а время разогрева жала доходит до 2-4 с.

Если П-сердечник заменить на ШЛ от 40 Вт с вторичной обмоткой из медной шины (поз. 3 и 4), то паяльник выдерживает часовую работу с интенсивностью 7-8 паек в минуту без недопустимого перегрева. Для работы в режиме периодических кратковременных КЗ число витков первичной обмотки увеличивают на 10-15% против расчетного. Данное исполнение выгодно и тем, что жало (медная проволока диаметром 1,2-2 мм) можно крепить непосредственно к выводам вторичной обмотки (поз. 5). Поскольку ее напряжение доли вольта, это еще увеличивает экономичность паяльника и удлиняет время его работы до перегрева.

С форсированным подогревом

Схема паяльника с форсированным подогревом особых пояснений не требует. В дежурном режиме нагреватель работает на четверти номинальной мощности, а при нажатии на пуск в него выбрасывается накопленная в батарее конденсаторов энергия. Отключая/подключая к батарее емкости, можно довольно грубо, но в допустимых пределах дозировать количество выделяемого жалом тепла. Достоинство – полное отсутствие наведенного потенциала на жале, если оно заземлено. Недостаток – на имеющихся в широкой продаже конденсаторах схема реализуема лишь для резисторных мини-паяльников, см. далее. Применяется в основном для эпизодических работ на не насыщенных компонентами платах гибридной сборки, smd + обычный печатный монтаж в сквозные пистоны.

На высокой частоте

Импульсные паяльники на повышенной или высокой частоте (десятки или сотни кГц) весьма экономичны: тепловая мощность на жале почти равна паспортной электрической инвертора (см. ниже). Также они компактны и легки, а их инверторы пригодны для питания резисторных мини-паяльников постоянного нагрева с изолированным жалом, см. далее. Нагрев жала до рабочей температуры – за доли с. В качестве регулятора мощности без доработок применим любой тиристорный регулятор напряжения 220 В. Могут быть запитаны постоянным напряжением 220 В.

Примечание: на мощность свыше ок. 50 Вт ВЧ импульсный паяльник делать не стоит. Хотя, напр. компьютерные ИПБ бывают мощностью до 350 Вт и более, но жало на такую мощность сделать практически невозможно – или не прогреется до рабочей температуры, или само расплавится.

Серьезный недостаток – на рабочих частотах сказывается влияние собственной индуктивности жала и вторичной обмотки. Из-за этого на жале на время более 1 мс может возникать наведенный потенциал свыше 50 В, что опасно для компонент КМОП (КМДП, CMOS). Также существенный недостаток – оператор облучается потоком мощности электромагнитного поля (ЭМП). Работать импульсным ВЧ паяльником мощностью 25-50 Вт можно не более часа в день, а до 25 Вт – не более 4-х час, но не более 1,5 час кряду.

Самый простой способ схемной реализации инвертора импульсного ВЧ паяльника на 25-30 Вт для обычных спаечных работ – на основе сетевого адаптера галогеновой лампы на 12 вольт, см. поз. 3 рис. со схемами. Трансформатор можно намотать на сердечнике из 2-х сложенных вместе колец К24х12х6 из феррита с магнитной проницаемостью μ не ниже 2000, или на Ш-образном магнитопроводе из такого же феррита сечением не менее 0,7 кв. см. Обмотка 1 – 250-260 витков эмалированного провода диаметром 0,35-0,5 мм, обмотки 2 и 3 – по 5-6 витков такого же провода. Обмотка 4 – 2 витка в параллель провода диаметром от 2 мм (на кольце) или оплетки от телевизионного коаксиального кабеля (поз. 3а), также запараллеленных.

Примечание: если паяльник более чем на 15 Вт, то транзисторы MJE13003 лучше заменить на MJE130nn, где nn>03, и поставить из на радиаторы площадью от 20 кв. см.

Вариант инвертора для паяльника до 16 Вт может быть выполнен на базе импульсного пускового устройства (ИПУ) для ЛДС или начинки перегоревшей лампочки-экономки соотв. мощности (не бейте колбу, там пары ртути!) Доработку иллюстрирует поз. 4 на рис. со схемами. То, что выделено зеленым, может быть различно в ИПУ разных моделей, но нам оно все равно. Нам нужно удалить пусковые элементы лампы (выделено красным на поз. 4а) и замкнуть накоротко точки А-А. Получим схему поз. 4б. В ней параллельно фазосдвигающему дросселю L5 подключается трансформатор на одном таком же кольце, как в пред. случае или на Ш-образном феррите от 0,5 кв. см (поз. 4в). Первичная обмотка – 120 витков провода диаметром 0,4-0,7; вторичная – 2 витка провода D>2 мм. Жало (поз. 4г) из такого же провода. Готовое устройство компактно (поз. 4д) и может быть помещено в удобный корпус.

Мини и микро на резисторах

Паяльник с нагревательным элементом на основе металлопленочного резистора МЛТ конструктивно аналогичен паяльнику из проволочного резистора, но выполняется на мощность до 10-12 Вт. Резистор работает с перегрузкой по мощности в 6-12 раз, т.к., во-первых, теплоотвод через относительно толстое (но абсолютно более тонкое) жало больше. Во-вторых, резисторы МЛТ физически в разы меньше ПЭ и ПЭВ. Отношение их поверхности к объему соотв. увеличивается и теплоотдача в окружающую среду относительно растет. Поэтому паяльники на резисторах МЛТ делаются только в вариантах мини и микро: при попытке увеличить мощность маленький резистор сгорает. Хотя МЛТ для спецприменения выпускаются на мощность до 10 Вт, своими силами реально сделать только паяльник на МЛТ-2 для мелких дискретных компонент (россыпи) и небольших микросхем, см. напр. видео ниже:

Видео: микро-паяльник на резисторах

Примечание: цепочка резисторов МЛТ может быть также использована в качестве нагревателя автономного аккумуляторного паяльника для обычных спаечных работ, см. след. ролик:

Видео: аккумуляторный мини-паяльник

Гораздо интереснее сделать мини паяльник из резистора МЛТ-0,5 для smd. Керамическая трубочка – корпус МЛТ-0,5 – очень тонкая и почти не препятствует теплопередаче на жало, но не пропустит тепловой импульс в момент касания полигона, отчего частенько сгорают компоненты smd. Подобрав жало (что требует довольно значительного опыта), smd таким паяльником можно не спеша паять, непрерывно контролируя в микроскоп процесс.

Процесс изготовления такого паяльника показан на рис. Мощность – 6 Вт. Нагрев либо непрерывный от инвертора из описанных выше, либо (лучше) с форсироваанным подогревом постоянным током от ИП на 12 В.

Примечание: как сделать усовершенствованный вариант такого паяльника с более широким диапазоном применения, подробно описано здесь – oldoctober.com/ru/soldering_iron/

Индукционные

Индукционный паяльник на сегодняшний день вершина технических достижений в области пайки металлов эвтектическими припоями. В сущности, паяльник с индукционным нагревом это миниатюрная индукционная печь: ВЧ ЭМП катушки-индуктора поглощается металлом жала, которое при этом греется вихревыми токами Фуко. Изготовить своими руками индукционный паяльник не так уж сложно, если есть в распоряжении источник токов ВЧ, напр. компьютерный импульсный блок питания, см. напр. сюжет

Видео: индукционный паяльник


Однако качественно-экономические показатели индукционных паяльников для обычных спаечных работ невысоки, чего не скажешь об их вредном влиянии на здоровье. Фактически единственное их преимущество – прикипевшее к обойме в корпусе жало можно выдирать, на опасаясь порвать нагреватель.

Гораздо больший интерес представляют индукционные мини-паяльники системы METCAL. Их внедрение на производстве электроники позволило уменьшить процент брака из-за ошибок монтажников в 10000 раз (!) и удлинить рабочую смену до нормальной, причем работники расходились после нее бодрыми и дееспособными во всех прочих отношениях.

Устройство паяльника типа METCAL показано слева вверху на рис. Изюминка – в ферроникелевом покрытии жала. Паяльник питается ВЧ точно выдержанной частоты 470 кГц. Толщина покрытия выбрана такой, что на данной частоте вследствие поверхностного эффекта (скин-эффекта) токи Фуко сосредотачивались только в покрытии, которое сильно греется и передает тепло в жало. Самое жало оказывается заэкранированным от ЭМП и наведенные потенциалы на нем не возникают.

Когда покрытие прогреется до точки Кюри, выше которой по температуре ферромагнитные свойства покрытия исчезают, оно поглощает энергию ЭМП гораздо слабее, но ВЧ в медь все равно не пускает, т.к. электрическую проводимость сохраняет. Остыв ниже точки Кюри само по себе или вследствие оттока тепла на пайку, покрытие вновь начинает интенсивно поглощать ЭМП и подогревает жало. Таким образом, жало держит температуру, равную точке Кюри покрытия с точностью буквально до градуса. Тепловой гистерезис жала при этом ничтожен, т.к. определяется тепловой инерцией тонкого покрытия.

Во избежание вредного влияния на людей паяльники выпускаются с несменными жалами, наглухо закрепленными в картридже коаксиальной конструкции, по которому и подводится к катушке ВЧ. Картридж вставляется в ручку паяльника – держатель с коаксиальным разъемом. Картриджи выпускаются типов 500, 600 и 700, что соответствует точке Кюри покрытия в градусах Фаренгейта (260, 315 и 370 градусов Цельсия). Основной рабочий картридж – 600; 500-м паяют особо мелкие smd, а 700-м крупные smd и россыпь.

Примечание: чтобы перевести градусы Фаренгейта в Цельсия, нужно от фаренгейтов отнять 32, умножить остаток на 5 и поделить на 9. Если надо наоборот, к цельсиям добавляем 32, результат множим на 9 и делим на 5.

Все замечательно в паяльниках METCAL, кроме цены картриджа: за «(название фирмы) новый, хороший» – от $40. «Альтернативные» в полтора раза дешевле, но вырабатываются вдвое быстрее. Сделать самому жало METCAL нереально: покрытие наносится напылением в вакууме; гальваническое при температуре Кюри мгновенно отслаивается. Посаженная на медь тонкостенная трубка не обеспечит абсолютного теплового контакта, без чего METCAL превращается просто в плохой паяльник. Тем не менее, сделать самому почти полный аналог паяльника METCAL, причем со сменным жалом, хоть и трудно, но возможно.

Индукционный для smd

Устройство самодельного индукционного паяльника для микросхем и smd, по рабочим качествам аналогичного METCAL, показано справа на рис. Когда-то похожие паяльники применялись на спецпроизводстве, но METCAL их полностью вытеснили благодаря лучшей технологичности и большей рентабельности. Однако для себя такой паяльник сделать можно.

Его секрет – в соотношении плеч наружной части жала и выступающего из катушки внутрь хвостовика. Если оно такое, как показано на рис. (приблизительно), а хвостовик покрыт теплоизоляцией, то тепловой фокус жала не выйдет за пределы обмотки. Хвостовик будет, конечно, горячее кончика жала, но их температуры будут меняться синхронно (теоретически термогистерезис нулевой). Раз настроив автоматику с помощью дополнительной термопары, измеряющей температуру кончика жала, дальше можно паять спокойно.

Роль точки Кюри играет таймер. Сигналом от терморегулятора на подогрев он обнуляется, напр., открыванием ключа, шунтирующего накопительную емкость. Запускается таймер сигналом, свидетельствующим о фактическом начале работы инвертора: напряжение с дополнительной обмотки трансформатора из 1-2 витков выпрямляется и разблокирует таймер. Если паяльником долго не паяют, таймер спустя 7 с выключит инвертор, пока жало не остынет и терморегулятор не выдаст новый сигнал на подогрев. Суть здесь в том, что термогистерезис жала пропорционален отношению времен выключенного и включенного нагрева жала O/I, а средняя мощность на жале обратному I/O. До градуса такая система температуру жала не держит, но +/–25 Цельсия при рабочей жала 330 обеспечивает.

В заключение

Так какой же паяльник делать? Мощный из проволочного резистора однозначно стоит: расходов на него всего ничего, есть не просит, а выручить может основательно.

Стоит также сделать, чтобы был на хозяйстве, простой паяльник для smd из резистора МЛТ. Кремниевая электроника выдохлась, она в тупике. Квантовая уже на подходе, и вдали явственно замаячила графеновая. Напрямую с нами та и другая не сопрягаются, как компьютер через экран, мышку и клавиатуру или смартик/планшетка через экран и сенсоры. Поэтому кремниевое обрамление в устройствах будущего останется, но исключительно smd, а теперешняя россыпь покажется чем-то вроде радиоламп. И не думайте, что это фантастика: всего 30-40 лет тому назад ни один фантаст до смартфона не додумался. Хотя первые образцы мобильников тогда уже были. А утюг или пылесос «с мозгами» тогдашним мечтателям и в дурном сне в голову не пришли бы.

(1 оценок, среднее: 5,00 из 5)

Самый простой способ изготовления паяльника в бытовых условиях – с применением резистора. Собранный прибор будет предназначен для работы при напряжении в диапазоне 6-24 Вольт. Для сборки такого электрического инструмента подготовьте следующие приспособления и материалы:

  • ПЭВ-резистор с ножками-выводами мощностью не более 7 Ватт и сопротивлением 20 Ом;
  • пластина из текстолита;
  • одно пружинное кольцо;
  • провода питания;
  • винты с шайбами;
  • два прутка меди с различным сечением.

Совет. Первый толстый медный пруток должен соответствовать диаметру внутренней полости используемого резистора. Второй же должен быть тонким настолько, чтобы его жалом было удобно паять микросхемы.

Сборка электрического паяльника с резистором не потребует больших затрат времени. Так, сначала в торцевой грани толстого прутка из меди просверлите отверстие с мелкой резьбой под винт. В нескольких сантиметрах от противоположного торца по всему диаметру прутка вырежьте канавку и вставьте в нее пружинное кольцо – оно будет выполнять роль фиксатора.

Затем просверлите во второй торцевой грани толстого прутка отверстие под тонкий прутик и вставьте последний в полученную выемку – так вы получите стержень будущего паяльника. Далее установите стержень в резистор и зафиксируйте конструкцию винтиком с шайбой в заранее выполненном отверстии.

Вырежьте из текстолитовой пластины рукоятку для паяльника с посадками под резистор и провода. Винтиками закрепите ножки-выводы резистора на пластине, а затее подключите к ним провода питания.

Теперь осталось только скрутить самодельный электрический паяльник и проверить его на практике.

Инструкция №2: Паяльник с шариковой ручкой

Второй не совсем обычный, но такой же доступный способ соорудить паяльник своими руками – с применением шариковой ручки в роли рабочего корпуса. В данном случае вам потребуется:

  • шариковая ручка;
  • МЛТ-резистор мощностью не более 0,5 Ватт и сопротивлением 10 Ом;
  • пластина из двухстороннего текстолита;
  • провода питания;
  • изолирующий материал – керамика или слюда;
  • проволока из меди – 1 мм в диаметре;
  • проволока из стали – 0,5-0,8 мм в диаметре.

Технология сборки паяльника:


Важно! Напряжение блока питания должно быть не выше 15 Вольт.

Как видите, сделать паяльник собственными руками под силу даже электрику-новичку, не имеющему профессиональных знаний и навыков в области электротехники. Перед вами две инструкции сборки инструментов разной сложности – подготовив все необходимые подручные средства и придерживаясь технологии, вы точно сможете смастерить функциональный прибор в домашних условиях.

Паяльник своими руками: видео

На 12 вольт – необходимый инструмент современной радиоэлектроники в домашнем обиходе. С его помощью можно быстро спаять микросхемы, детали микронаушника, ручных электронных часов, починить зарядку для телефона. Многие радиолюбители предпочитают делать электропаяльник своими руками. Эта работа экономит деньги и не дает забыть школьный курс физики.

Необходимые материалы и инструменты

Для изготовления паяльника много материала не понадобится, и его можно легко найти у себя дома. Это медная проволока для изготовления непосредственно спаивающей основы, медная фольга, жестяная трубка (для кожуха) и нихромовая проволока, рукоятка (желательно пластмассовая), электрошнур в термостойкой изоляции, силикатный клей, тальк для электроизоляционной массы.

Иногда трудно найти медную фольгу. Можно воспользоваться фольгированным стеклотекстолитом. Его часто применяют при изготовлении печатных схем и плат. Если таковые дома отсутствуют, можно обратиться в магазин и за 200 рублей приобрести необходимый материал. Чтобы получить один лист медной фольги, нужно нагреть стеклотекстолит при помощи обыкновенного утюга и, разделив его на тонкие пластины, потянуть за уголок, намотать на круглую палочку.

Основным элементом является трансформатор 220/12 вольт, через который паяльник будет получать энергию от электросети. Часто используют ТВК-11ОЛ. Его можно найти в старых ламповых телевизорах.

Необходимые следующие инструменты:

  • пинцет;
  • плоскогубцы;
  • кусачки;
  • пластины или дощечки для обмазывания клеевой массой;
  • плита (электро- или газовая);
  • ветошь.

Вернуться к оглавлению

Этапы сборки паяльника

Медная проволока, которую вы приобрели, послужит жалом микропаяльника. Понадобится всего 50 мм. Ее нужно заточить в виде двухгранного угла с одной стороны и обязательно залудить грани. Готовое жало будет находиться внутри нагревательного элемента.

Вторым этапом изготовления микропаяльника будет приготовление специальной электроизоляционной массы. Для этого смешайте тальк и жидкое стекло (силикатный клей). С помощью дощечки или пинцета нанесите изоляцию на цилиндрическую поверхность, периодически посыпая тальком, чтобы масса не прилипала к рукам.

Медную фольгу сверните в трубочку длиной около 35 мм. Это и будет основание нагревательного элемента. С одной стороны из-под трубки будет видно жало паяльника. Эту трубку необходимо покрыть изоляционной массой, как и в первом случае. Сырую массу, которую вы нанесли, нужно просушить над плитой до полного застывания. Теперь на готовое основание можно намотать нихромовую проволоку, сделав спираль. Ее длина не должна превышать 350 мм. Укладывать витки нужно аккуратно и очень близко друг к другу, при этом верхний и нижний концы проволоки (от 30 до 60 мм) оставляют как выводы. Данную конструкцию еще раз покрывают смесью электроизоляции и просушивают над плитой.

Теперь заворотной конец проволоки нужно отогнуть назад, плотно прижать его к поверхности трубки и повторить нанесение массы третий раз. Только после этого нагревательный элемент паяльника можно считать полностью готовым к применению.

Проволока, которая выступает из-под нагревательного элемента, должна быть покрыта электроизоляционной массой. При этом нужно запастись терпением и, каждый раз нанося массу, не забывать проверять качество выполненных действий.

Когда основание полностью покрыто изоляцией, можно приступать к сборке микропаяльника. Соединяем концы нихромового нагревателя с ручкой. Для этого через внутреннюю пластмассовую полость протягиваем электрошнур в термостойкой изоляции. Оголенные места нужно изолировать массой и просушить. После этого надеваем на нагреватель защитный жестяной кожух и соединяем его с рукояткой. Микропаяльник готов к применению.

Вернуться к оглавлению

Самодельный паяльник из резистора

Радиолюбители часто используют самые необычные подручные средства для изготовления различных инструментов. Простота, надежность, удобство в работе – вот технические характеристики микропаяльника, сделанного своими руками.

Как и в предыдущем варианте, для изготовления паяльника понадобятся медная и стальная проволоки и двухсторонний текстолит.

Новыми элементами будут шариковая ручка (для изготовления корпуса) и резистор МЛТ-0,5, имеющий сопротивление 5-10 ом.

Начинаем работу с изготовления нагревательного элемента. С помощью скальпеля или наждачной бумаги удалите краску с резистора. Для этого подключите его к регулируемому источнику питания. После тщательной очистки от краски удалите одну из ног резистора, а другую используйте в качестве крепежного элемента и токовода. В той части резистора, где была удалена нога, нужно просверлить отверстие диаметром в 1 мм для установки жала паяльника. После этого раззенкуйте отверстие сверлом большего диаметра так, чтобы жало паяльника не соприкасалось с чашечкой. С помощью надфиля нужно сделать еще один пропил круглой формы для крепления токовода на глубину 2/3 от толщины.

Токовод можно сделать из хорошо лудящейся пружинки, колечки которой должны плотно надеваться на чашку.

Следующим этапом работы является изготовление платы из текстолита. Она имеет широкую часть для припаивания токовода и рассеивания тепла, среднюю – для корпуса ручки, узкую – для крепления проводков и кембрика.

После этих операций можно приступать к сборке. Токовод из пружинки нужно надеть на переднюю чашечку. Тоководы припаивают к плате из текстолита. Устанавливают жало микропаяльника из медной проволоки, предварительно одев его в кусочек керамики или слюды, для того чтобы не было доступа тока. Теперь к плате остается припаять провода (желательно МГТФ). В качестве элемента питания используют регулируемый БП1А, 0-15В. Микропаяльник готов к применению.

Технология пайки самодельным микропаяльником ничем не отличается от того, который вы приобрели в магазине. С помощью него можно выполнять даже миниатюрные пайки. Он очень удобен и не требует больших умений для сборки.

Многие пользуются самодельными паяльниками. Вариантов реализации достаточно много, поскольку эти инструменты ваяют из того, что имеется под рукой или легко отыскивается. Наиболее трудоемок процесс изготовления паяльника, подобного заводскому, но малой мощности. Вот пример того, из чего и как сделать миниатюрный в домашних условиях. Предполагается, что питание паяльник будет получать не напрямую от сети, а через трансформатор 220/12 В.

Понадобятся следующие материалы:

  • медная проволока диаметром 1,5 мм – около 40мм длиной
  • медная фольга – небольшой прямоугольник 30х10 мм или немного больше
  • нихромовая проволока 0,2 мм – 350 мм
  • жестяная трубка или кусок жести для того, чтобы сделать кожух для нагревательного элемента
  • силикатный клей (жидкое стекло)
  • тальк для изготовления с добавлением силикатного клея изолирующего слоя
  • рукоятка из термостойкой пластмассы
  • электрический шнур с вилкой

Потребуются и некоторые вспомогательные вещи:

  • источник тепла (печь электрическая или газовая)
  • стандартные инструменты (кусачки, пинцет, плоскогубцы, напильник)
  • нестандартные приспособления (что-то в виде узкого небольшого шпателя – деревянного или пластмассового)
  • много ветоши (удалять с рук и инструмента очень липкую изолирующую смесь)

Последовательность действий для сборки инструмента

Описание процесса приводится схематически, так как выполнение обычно затруднений не вызывает.

Важно! Готовый паяльник можно включать, как уже говорилось, в сеть через трансформатор или в 12-вольтовый блок питания, рассчитанный на ток в 1 А.
Таким паяльником можно работать с микросхемами, но следует позаботиться о защите от статического электричества.

Альтернативный вариант такому паяльнику представляет интерес для тех, кто неприхотлив к внешнему виду прибора, которым придется работать. Фишка такого решения в том, что в качестве нагревательного элемента используется резистор ПЭВ-10 или ПЭВ-7,5. Остается вставить жало, которое фиксируется в медной трубке, плотно всаженной внутрь резистора, и позаботиться о хорошей фиксации контактов резистора, которые не выдерживают определенных механических нагрузок.

Видео о том, как сделать мини паяльник своими руками

Как изготовить самодельный мини паяльник поможет разобраться следующий видеоролик:

Лучшие статьи по теме