Строительный мастер
  • Главная
  • Кровля
  • Постоянный ток. Генератор переменного тока: устройство, принцип работы, назначение Генераторы электротехника

Постоянный ток. Генератор переменного тока: устройство, принцип работы, назначение Генераторы электротехника

Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно , представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, - так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс - возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает .


Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом - используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.


Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.


Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым .

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути - постоянному току, существуют целые отрасли металлургии и химической промышленности.


Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.


Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные выдают на электрод постоянное напряжение.


Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).


Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.


А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров - тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и - почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.


Подводная лодка - и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.


И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

Это упорядоченное движение определенных заряженных частиц. Для того чтобы грамотно использовать весь потенциал электричества, необходимо четко понимать все принципы устройства и работы электрического тока. Итак, давайте разберемся, что же такое работа и мощность тока.

Откуда вообще берется электрический ток?

Несмотря на кажущуюся простоту вопроса, немногие способны дать на него вразумительный ответ. Конечно, в наши дни, когда технологии развиваются с неимоверной скоростью, человек особо не задумывается о таких элементарных вещах, как принцип действия электрического тока. Откуда берется электричество? Наверняка многие ответят "Ну, из розетки, ясное дело" или же просто пожмут плечами. А между тем, очень важно понимать, как происходит работа тока. Это следует знать не только ученым, но и людям, никак не связанным с миром наук, для их же всеобщего разностороннего развития. А вот уметь грамотно использовать принцип работы тока под силу не каждому.

Итак, для начала следует понять, что электричество не возникает ниоткуда: его вырабатывают специальные генераторы, которые находятся на различных электростанциях. Благодаря работе вращения лопастей турбин паром, полученным в результате нагрева воды углями или нефтью, возникает энергия, которая впоследствии с помощью генератора превращается в электричество. Генератор устроен очень просто: в центре устройства находится огромный и очень сильный магнит, который заставляет электрические заряды двигаться по медным проводам.

Каким образом электрический ток доходит до наших домов?

После того как с помощью энергии (тепловой или ядерной) было получено определенное количество электрического тока, его можно подавать людям. Работает такая подача электричества следующим образом: чтобы электричество успешно дошло до всех квартир и предприятий, его нужно "подтолкнуть". А для этого потребуется увеличить силу, которая и будет это делать. Она называется напряжением электрического тока. Принцип действия выглядит так: ток проходит через трансформатор, который увеличивает его напряжение. Далее электрический ток идет по кабелям, установленным глубоко под землей или же на высоте (ибо напряжение порой достигает 10000 Вольт, что является смертельно опасным для человека). Когда ток добирается до места своего назначения, он снова должен пройти через трансформатор, который теперь уже уменьшит его напряжение. Затем он проходит по проводам к установленным щитам в многоквартирных домах или других зданиях.

Проведенное через провода электричество можно использовать благодаря системе розеток, подключая к ним бытовые приборы. В стенах же проводятся дополнительные провода, через которые течет электрический ток, и благодаря именно ему работает освещение и вся техника в доме.

Что такое работа тока?

Энергия, которую несет в себе электрический ток, с течением времени преобразуется в световую или же тепловую. Например, когда мы включаем лампу, электрический вид энергии превращается в световую.

Если говорить доступным языком, то работа тока - это то действие, которое произвело само электричество. При этом ее можно очень легко подсчитать по формуле. Исходя из закона о сохранении энергии, можем сделать вывод, что электрическая энергия не пропала, она полностью или частично перешла в другой вид, отдав при этом определенное количество теплоты. Эта теплота и есть работа тока, когда он проходит по проводнику и нагревает его (происходит теплообмен). Так выглядит формула Джоуля-Ленца: A = Q = U*I*t (работа равна количеству теплоты или же произведению мощности тока на время, за которое он протекал по проводнику).

Что означает постоянный ток?

Электрический ток бывает двух видов: переменный и постоянный. Они различаются тем, что последний не меняет своего направления, он имеет два зажима (положительный "+" и отрицательный "-") и начинает свое движение всегда из "+". А переменный ток имеет две клеммы - фазу и ноль. Именно из-за наличия одной фазы на конце проводника, его называют также однофазным.

Принципы устройства однофазного переменного и постоянного электрического тока абсолютно разные: в отличие от постоянного, переменный меняет и свое направление (образуя поток как из фазы в направлении к нулю, так из нуля по направлению к фазе), и свою величину. Так, например, переменный ток периодически меняет значение своего заряда. Получается, что при частоте 50 Гц (50 колебаний в секунду) электроны меняют направление своего движения ровно 100 раз.

Где используется постоянный ток?

Постоянный электрический ток обладает некоторыми особенностями. Ввиду того, что он течет строго по одному направлению, его сложнее трансформировать. Источниками постоянного тока можно считать следующие элементы:

  • аккумуляторы (как щелочные, так и кислотные);
  • обычные батарейки, используемые в мелких приборах;
  • а также различные устройства типа преобразователей.

Работа постоянного тока

Каковы его главные характеристики? Это работа и мощность тока, причем оба эти понятия очень тесно связаны друг с другом. Мощность подразумевает под собой скорость работы в единицу времени (за 1 с). По закону Джоуля-Ленца получаем, что работа постоянного электрического тока равна произведению силы самого тока, напряжения и времени, в течение которого была совершена работа электрического поля по переносу зарядов вдоль проводника.

Так выглядит формула по нахождению работы тока с учетом закона Ома о сопротивлении в проводниках: A = I 2 *R*t (работа равна квадрату силы тока умноженному на значение сопротивления проводника и еще раз умноженному на значение времени, за которое совершалась работа).

По десятку раз на дню, включая и выключая свет и пользуясь бытовой техникой, мы даже не задумываемся, откуда берется электричество и какова его природа. Понятно конечно, что по ЛЭП (линия электропередач ) оно поступает от ближайшей электростанции, но это весьма ограниченное представление об окружающем мире. А ведь если выработка электроэнергии во всем мире прекратится хотя бы на пару дней, количество погибших будет измеряться сотнями миллионов.

Как возникает ток?

Из курса физики мы знаем, что:

  • Вся материя состоит из атомов, мельчайших частиц.
  • По орбите вокруг ядра атома вращаются электроны, они имеют отрицательный заряд.
  • В ядре располагаются положительно заряженные протоны.
  • В норме эта система находится в состоянии равновесия.

А вот если хоть один атом потеряет всего один электрон:

  1. Его заряд станет положительным.
  2. Положительно заряженный атом начнет притягивать к себе электрон, из-за разности зарядов.
  3. Чтобы получить для себя недостающий электрон, его придется «сорвать» с чьей-то орбиты.
  4. В результате еще один атом станет положительно заряженным и все повторится, начиная с первого пункта.
  5. Такая цикличность приведет к образованию электрической цепи и линейному распространению тока.

Так что с точки зрения ядерной физики все предельно просто, атом пытается получить то, чего ему больше всего не хватает и таким образом запускает начало реакции .

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру ». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Двадцатый век стал периодом расцвета электроэнергии :

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции и проведены линии электропередач .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Как получить электричество?

Представлять человека в виде наркомана, которому регулярно необходима «живительная доза электричества» немного наивно, но попробуйте полностью обесточить свое жилище и спокойно прожить хотя бы сутки. Отчаянье может заставить вспомнить оригинальные способы добычи тока. На практике это мало кому пригодится, но может кому-то пара Вольт спасет жизнь или поможет произвести впечатление на ребенка:

  • Разрядившийся аккумулятор телефона можно потереть об одежду, подойдут джинсы или шерстяной свитер. Статического электричества надолго не хватит, но это уже хоть что-то.
  • Если рядом есть морская вода , можно налить ее в две банки или стакана, соединить их медным проводом, предварительно обмотав его оба конца фольгой. Конечно для всего этого, помимо соленой воды, понадобятся еще емкости, медь и фольга. Не лучший вариант для экстремальных ситуаций.
  • Куда реалистичнее наличие железного гвоздя и небольшого медного прибора. Два куска металла следует использовать как анод и катод - гвоздь в ближайшее дерево, медь в землю. Между ними натянуть любую нить, незамысловатая конструкция даст примерно один Вольт.
  • Если использовать драгоценные металлы - золото и серебро, получится добиться большего напряжения.

Как экономить электричество?

У экономии электроэнергии могут быть разные причины - желание сохранить экологию, попытка уменьшить ежемесячные счета или что-то другое. Но способы всегда примерно одни:

Не всегда следует себя в чем-то сурово ограничивать, чтобы снизить расходы. Есть еще один неплохой совет - отключайте от сети все приборы, пока вы ими не пользуетесь .

Холодильник, естественно, не в счет. Даже находясь в «ждущем» режиме техника потребляет некоторое количество электричества. Но если хоть на секунду задуматься, то можно прийти к мысли, что почти все приборы большую часть суток вам не нужны. И все это время они продолжают сжигать ваше электричество .

Современные технологии тоже нацелены на то, чтобы снизить общий уровень потребления электроэнергии. Чего стоят хотя бы энергосберегающие лампочки , которые могут уменьшить расходы на освещение помещения, раз так в пять. Совет жить по «солнечным часам» может показаться диким и абсурдным, но уже давно доказано, что искусственное освещение повышает риск развития депрессии.

Как вырабатывается электричество?

Если углубляться в научные детали:

  1. Ток появляется за счет потери атомом электрона.
  2. Положительно заряженный атом притягивает к себе отрицательно заряженные частицы.
  3. Происходит потеря другим атомом своих электронов с орбиты и история повторяется снова.
  4. Это объясняет направленное движение тока и наличие вектора распространения.

А вообще электричество вырабатывается электростанциями . Там либо сжигают топливо, либо используют энергию расщепления атомов, а может даже пускают в ход природные стихии. Речь идет о солнечных батареях, ветряках и ГРЭС.

Полученную механическую или тепловую энергию, за счет генератора, переводят в ток. Он накапливается в аккумуляторах и по ЛЭП поступает в каждый дом.

Сегодня не обязательно знать, откуда берется электричество, чтобы пользоваться всеми благами, которое оно предоставляет. Люди уже давно отошли от первоначальной сути вещей и потихоньку начинают о ней забывать.

Видео: откуда поступает электричество к нам?

В этом видео наглядно будет показан путь электричества от электростанции до нас, откуда оно берется и как поступает в наш дом:

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угодно, и даже большие разрушения при неумелом использовании.

Но было время, когда электрические эффекты все так же присутствовали в природе, но никак не помогали человеку. Что же изменилось с тех пор? Люди стали изучать физические явления и придумали интересные машины - преобразователи, которые, в общем, и сделали революционный скачок нашей цивилизации, позволив человеку получать одну энергию из другой.

Так люди научились вырабатывать электричество из обычного металла, магнитов и механического движения - только и всего. Были построены генераторы, способные выдавать колоссальные по мощности потоки энергии, исчисляемые мегаваттами. Но интересно, что принцип действия этих машин не так уж сложен и вполне может быть понятен даже подростку. Что же такое Попробуем разобраться в этом вопросе.

Эффект электромагнитной индукции

Основой появления в проводнике электрического тока является электродвижущая сила - ЭДС. Она способна заставить перемещаться заряженные частицы, которых много в любом металле. Эта сила появляется только в случае, если проводник испытывает на себе изменение интенсивности магнитного поля. Сам эффект получил название электромагнитной индукции. ЭДС тем больше, чем больше скорость изменения потока магнитных волн. То есть, можно возле постоянного магнита перемещать проводник, или на неподвижный провод влиять полем электромагнита, меняя его силу, эффект будет один и тот же - в проводнике появится электрический ток.

Над этим вопросом в первой половине XIX века работали ученые Эрстед и Фарадей. Они же и открыли это физическое явление. В последствии на основе электромагнитной индукции были созданы генераторы тока и электродвигатели. Интересно, что эти машины легко могут быть преобразованы друг в друга.

Как работают генераторы постоянного и переменного тока

Понятно, что генератор электрического тока - это электромеханическая машина, вырабатывающая ток. Но на самом деле она есть преобразователь энергии: ветра, воды, тепла, чего угодно в ЭДС, которая уже вызывает ток в проводнике. Устройство любого генератора принципиально ничем не отличается от замкнутого проводящего контура, который вращается между полюсами магнита, как в первых опытах ученых. Только намного больше величина магнитного потока, создаваемого мощными постоянными или чаще электрическими магнитами. Замкнутый контур имеет вид многовитковой обмотки, которых в современном генераторе не одна, а минимум три. Все это сделано для того, чтобы получить как можно большую ЭДС.

Стандартный электрический генератор переменного тока (или постоянного) состоит из:

  • Корпуса . Выполняет функцию рамы, внутри которой крепят статор с полюсами электромагнита. В нем установлены подшипники качения роторного вала. Его изготавливают из металла, он также защищает всю внутреннюю начинку машины.
  • Статора с магнитными полюсами. На нем закреплена обмотка возбуждения магнитного потока. Его выполняют из ферромагнитной стали.
  • Ротора или якоря. Это подвижная часть генератора, вал которой приводит во вращательное движение посторонняя сила. На сердечнике якоря располагают обмотку самовозбуждения, где и образуется электрический ток.
  • Узла коммутации. Этот элемент конструкции служит для отведения электричества с подвижного вала ротора. Он включает в себя проводящие кольца, которые подвижно соединены с графитовыми токосъемными контактами.

Создание постоянного тока

В генераторе, продуцирующем постоянный ток, проводящий контур вращается в пространстве магнитной насыщенности. Причем за определенный момент вращения каждая половина контура оказывается вблизи того или иного полюсника. Заряд в проводнике за этот полуоборот движется в одном направлении.

Чтобы получить съем частиц, сделан механизм отвода энергии. Его особенность в том, что каждая половина обмотки (рамки) соединена с токопроводящим полукольцом. Полукольца между собой не замкнуты, а закреплены на диэлектрическом материале. За период, когда одна часть обмотки начинает проходить определенный полюс, полукольцо замыкается в электрическую схему щеточными контактными группами. Получается, на каждую клемму приходит только одного вида потенциал.

Правильнее назвать энергию не постоянной, а пульсирующей, с неизменной полярностью. Пульсация вызвана тем, что магнитный поток на проводник при вращении оказывает как максимальное, так и минимальное влияние. Чтобы эту пульсацию выровнять, применяют несколько обмоток на роторе и мощные конденсаторы на входе схемы. Для уменьшения потерь магнитного потока зазор между якорем и статором делают минимальным.

Схема генератора переменного тока

Когда происходит вращение подвижной части генерирующего ток устройства, в проводниках рамки также наводится ЭДС, как и в генераторе постоянного тока. Но небольшая особенность - генератор переменного тока устройство коллекторного узла имеет другое. В нем каждый вывод соединен со своим токопроводящим кольцом.

Принцип работы генератора переменного тока следующий: когда половина обмотки проходит возле одного полюса (другая, соответственно, возле противоположного полюса), в цепи движется ток в одном направлении от минимума к наивысшему своему значению и снова к нулю. Как только обмотки меняют свое положение относительно полюсов, ток начинает свое движение в обратном направлении с той же закономерностью.

При этом на входе схемы получается форма сигнала в виде синусоиды с частотой полуволн, соответствующей периоду вращения вала ротора. Для того, чтобы получить на выходе стабильный сигнал, где частота генератора переменного тока постоянна, период вращения механической части должен быть неизменным.

газового типа

Конструкции генераторов тока, где вместо металлической рамки как носитель зарядов используют токопроводящую плазму, жидкость или газ, получили название МГД-генераторов. Вещества под давлением прогоняют в поле магнитной напряженности. Под воздействием все той же ЭДС индукции заряженные частицы обретают направленное движение, создавая электрический ток. Величина тока прямо пропорциональна скорости прохождения через магнитный поток, а также его мощности.

Генераторы МГД имеют более простое конструктивное решение - в них отсутствует механизм вращения ротора. Такие источники питания способны выдавать большие мощности энергии в короткие промежутки времени. Их применяют в качестве резервных устройств и в условиях экстренных аварийных ситуаций. Коэффициент, определяющий полезное действие (КПД) этих машин выше, чем имеет электрический генератор переменного тока.

Генератор синхронный переменного тока

Существуют такие типы генераторов переменного тока:

  • Машины синхронные.
  • Машины асинхронные.

Синхронный генератор переменного тока имеет строгую физическую зависимость между вращательным движением ротора и электричества. В таких системах ротор - это электромагнит, собранный из сердечников, полюсов и возбуждающих обмоток. Последние запитываются от источника постоянного тока посредством щеток и кольцевых контактов. Статор же представляет собой катушки провода, соединенные между собой по принципу звезды с общей точкой - нолем. В них уже наводится ЭДС и вырабатывается ток.

Вал ротора приводится в движение посторонней силой, обычно турбинами, частота движения которых синхронизирована и постоянна. Электрическая цепь, подключаемая к такому генератору, представляет собой трехфазную схему, частота тока в отдельной линии которой смещена на фазу в 120 градусов относительно других линий. Чтобы получить правильную синусоиду, направление магнитного потока в просвете между статорной и роторной частью регулируют конструкцией последних.

Возбуждение генератора переменного тока реализуют двумя методами:

  1. Контактным.
  2. Бесконтактным.

В схеме контактного возбуждения на обмотки электромагнита через щеточную пару подают электроэнергию с другого генератора. Этот генератор может быть совмещен с валом основного. Он, как правило, имеет меньшую мощность, но достаточную, чтобы создать сильное магнитное поле.

Бесконтактный принцип предусматривает, что синхронный генератор переменного тока на валу имеет дополнительные трехфазные обмотки, в которых при вращении наводится ЭДС и вырабатывается электричество. Оно через выпрямляющую схему поступает на катушки возбуждения ротора. Конструктивно в такой системе отсутствуют подвижные контакты, что упрощает систему, делая ее более надежной.

Асинхронный генератор

Существует асинхронный генератор переменного тока. Устройство его отличается от синхронного. В нем нет точной зависимости ЭДС от частоты с которой вал ротора вращается. Присутствует такое понятие как «скольжение S», которое характеризует эту разницу влияния. Величина скольжения определяется вычислением, так что неправильно думать, будто бы нет закономерности электромеханического процесса в асинхронном двигателе.

Если генератор, работающий вхолостую, нагрузить, то протекающий в обмотках ток будет создавать магнитный поток, препятствующий вращению ротора с заданной частотой. Так образуется скольжение, что, естественно, влияет на выработку ЭДС.

Современный асинхронный генератор переменного тока устройство подвижной части имеет в трех разных исполнениях:

  1. Полый ротор.
  2. Короткозамкнутый ротор.
  3. Фазный ротор.

Такие машины могут иметь само- и независимое возбуждение. Первая схема реализуется за счет включения в обмотку конденсаторов и полупроводниковых преобразователей. Возбуждение независимого типа создается дополнительным источником переменного тока.

Схемы включения генераторов

Все мощные источники питания линий электропередач вырабатывают трехфазный электрический ток. Они содержат в себе три обмотки, в которых образуются переменные токи со смещенной друг от друга фазой на 1/3 периода. Если рассматривать каждую отдельную обмотку такого источника питания, то получим однофазный переменный ток, идущий в линию. Напряжение в десятки тысяч вольт может вырабатывать генератор. потребитель получает с распределительного трансформатора.

Любой генератор переменного тока устройство обмоток имеет стандартное, но подключение к нагрузке бывает двух типов:

  • звездой;
  • треугольником.

Принцип работы генератора переменного тока, включенного звездой, предполагает объединение всех проводов (нулевых) в один, которые идут от нагрузки обратно к генератору. Это обусловлено тем, что сигнал (электрический ток) передается в основном через выходящий провод обмотки (линейный), который и называют фазой. На практике это очень удобно, ведь не нужно тянуть три дополнительных провода для подключения потребителя. Напряжение между линейными проводами и линейным и нулевым проводом будут отличаться.

Соединяя треугольником обмотки генератора, их замыкают друг с другом последовательно в один контур. Из точек их соединения выводят линии к потребителю. Тогда вообще не нужен нулевой провод, а напряжение на каждой линии будет одинаковым независимо от нагрузки.

Преимуществом трехфазного тока перед однофазным является его меньшая пульсация при выпрямлении. Это положительно сказывается на питаемых приборах, особенно двигателях постоянного напряжения. Также трехфазный ток создает вращающийся поток магнитного поля, который способен приводить в движение мощные асинхронные двигатели.

Где применимы генераторы постоянного и переменного тока

Генераторы постоянного тока значительно меньше по размерам и массе, чем машины переменного напряжения. Имея более сложное конструктивное исполнение чем последние, они все же нашли применение во многих отраслях промышленности.

Основное распространение они получили в качестве высокооборотных приводов в машинах, где требуется регулирование частоты вращения, например, в металлообрабатывающих механизмах, подъемниках шахт, прокатных станах. В транспорте такие генераторы установлены на тепловозах, различных судах. Множество моделей ветрогенераторов собраны на базе источников постоянного напряжения.

Генераторы постоянного тока специального назначения применяют в сварке, для возбуждения обмоток генераторов синхронного типа, в качестве усилителей постоянного тока, для питания гальванических и электролизных установок.

Назначение генератора переменного тока - вырабатывать электроэнергию в промышленных масштабах. Такой вид энергии подарил человечеству Никола Тесла. Почему именно изменяющий полярность ток, а не постоянный нашел широкое применение? Это связано с тем, что при передаче постоянного напряжения идут большие потери в проводах. И чем длиннее провод, тем потери выше. Переменное напряжение можно транспортировать на огромные расстояния при гораздо меньших затратах. Причем легко можно преобразовывать переменное напряжение (понижая и повышая его), который выработал генератор 220 В.

Заключение

Человек до конца не познал который пронизывает все вокруг. И электрическая энергия - это лишь малая часть открытых тайн мироздания. Машины, которые мы называем генераторами энергии, по сути очень просты, но то, что они могут нам дать, просто поражает воображение. Все же настоящее чудо здесь не в технике, а в мысли человека, которая смогла проникнуть в неисчерпаемый резервуар идей, разлитых в пространстве!

Лучшие статьи по теме